Benchmarking Personal Cloud Storage

→ Idilio Drago
→ Enrico Bocchi
→ Marco Mellia
→ Herman Slatman
→ Aiko Pras
Motivation and goals

- Personal Cloud Storage: very popular, large amount of traffic
 - Dropbox: 100 million users, 1 billion uploads / day
Motivation and goals

- Personal Cloud Storage: very popular, large amount of traffic
 - Dropbox: 100 million users, 1 billion uploads / day
- Lots of different applications
 - Do they follow different design?
 - Which are their client capabilities?
 - What is the impact on end-user performance?
Motivation and goals

- Personal Cloud Storage: very popular, large amount of traffic
 - Dropbox: 100 million users, 1 billion uploads / day
- Lots of different applications
 - Do they follow different design?
 - Which are their client capabilities?
 - What is the impact on end-user performance?
Which infrastructure is being used?
Which infrastructure is being used?

- Manual preliminary evaluation of each application
 - Mostly HTTPS
 - Control and Storage servers
Which infrastructure is being used?

- Manual preliminary evaluation of each application
 - Mostly HTTPS
 - Control and Storage servers
- Where are their data centers
 - Collect the list of server names of each application
 - Resolve the names using 2,000 open DNS resolvers
 - Collect the list of server IP addresses
Which infrastructure is being used?

- Manual preliminary evaluation of each application
 - Mostly HTTPS
 - Control and Storage servers
- Where are their data centers
 - Collect the list of server names of each application
 - Resolve the names using 2,000 open DNS resolvers
 - Collect the list of server IP addresses
- Geolocation IP addresses
 - Use common techniques
 - Example: Shortest RTT from PlanetLab nodes
Where are data centers located?
Where are data centers located?

- Few Control and Storage locations
- Centralized services
Where are data centers located?

- Users reach the closest Google’s Edge Point of Presence\(^1\)
- Reduced RTT, offload public Internet

\(^1\)https://peering.google.com/about/delivery_ecosystem.html
Protocol design: What happens when the app is idle?
Protocol design: What happens when the app is idle?

- **Generally silent protocols**
 - e.g., SkyDrive: 1 min polling interval (32 b/s)
Protocol design: What happens when the app is idle?

- Cloud Drive: polling every 15 s over a new HTTPS session
 - 6 kb/s per user → 65 MB per day per user
 - 1 million users → 6 Gb/s of signaling traffic
Methodology – Creating benchmarks

- Ad-hoc crafted workloads to detect specific features
- Check implications on end-user performance
Methodology – Creating benchmarks

- **Application-under-test** – service clients running on a virtual machine
- **Testing application** – python scripts controlling the experiments
Methodology – Creating benchmarks

- Configuration parameters – e.g., number of repetitions
- **Workload definition** – e.g., number of files, type of content etc.
Methodology – Creating benchmarks

- Workload manipulated via FTP
- **Files created at run-time** – e.g., 1 MB file with random text
Methodology – Creating benchmarks

- Application-under-test synchronizes files
- Traffic is intercepted (packet level)
Methodology – Creating benchmarks

- **Post-process to calculate performance metrics**
 - Compute upload time, overhead, etc.
What are the client capabilities?
What are the client capabilities?

<table>
<thead>
<tr>
<th></th>
<th>Dropbox</th>
<th>SkyDrive</th>
<th>Wuala</th>
<th>Google Drive</th>
<th>Cloud Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>variable</td>
<td>variable</td>
<td>8 MB</td>
<td>×</td>
</tr>
<tr>
<td>Bundling</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Deduplication</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Compression</td>
<td>always</td>
<td>never</td>
<td>never</td>
<td>smart</td>
<td>never</td>
</tr>
</tbody>
</table>

- Clients differ considerably
What are the client capabilities?

<table>
<thead>
<tr>
<th></th>
<th>Dropbox</th>
<th>SkyDrive</th>
<th>Wuala</th>
<th>Google Drive</th>
<th>Cloud Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>variable</td>
<td>variable</td>
<td>8 MB</td>
<td>✗</td>
</tr>
<tr>
<td>Bundling</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Deduplication</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Compression</td>
<td>always</td>
<td>never</td>
<td>never</td>
<td>smart</td>
<td>never</td>
</tr>
</tbody>
</table>

- **Uploading a large file**
 - ☐ Upload it as a single content?
 - ☐ ... or chop it into smaller chunks?
What are the client capabilities?

<table>
<thead>
<tr>
<th></th>
<th>Dropbox</th>
<th>SkyDrive</th>
<th>Wuala</th>
<th>Google Drive</th>
<th>Cloud Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>variable</td>
<td>variable</td>
<td>8 MB</td>
<td>✗</td>
</tr>
<tr>
<td>Bundling</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Deduplication</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Compression</td>
<td>always</td>
<td>never</td>
<td>never</td>
<td>smart</td>
<td>never</td>
</tr>
</tbody>
</table>

- **Uploading **lots of files
 - Create a bundle?
 - ... or one/many TCP connections/transactions?
- Google Drive and Cloud Drive open one/three TCP connections per file
What are the client capabilities?

<table>
<thead>
<tr>
<th></th>
<th>Dropbox</th>
<th>SkyDrive</th>
<th>Wuala</th>
<th>Google Drive</th>
<th>Cloud Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>variable</td>
<td>variable</td>
<td>8 MB</td>
<td>✗</td>
</tr>
<tr>
<td>Bundling</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Deduplication</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Compression</td>
<td>always</td>
<td>never</td>
<td>never</td>
<td>smart</td>
<td>never</td>
</tr>
</tbody>
</table>

- Creating a second **copy of the same file**
 - Re-upload it completely?
 - ... or just update metadata?
- Deduplication in Wuala is compatible with per-user encryption
What are the client capabilities?

<table>
<thead>
<tr>
<th></th>
<th>Dropbox</th>
<th>SkyDrive</th>
<th>Wuala</th>
<th>Google Drive</th>
<th>Cloud Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>variable</td>
<td>variable</td>
<td>8 MB</td>
<td>✗</td>
</tr>
<tr>
<td>Bundling</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Deduplication</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Compression</td>
<td>always</td>
<td>never</td>
<td>never</td>
<td>smart</td>
<td>never</td>
</tr>
</tbody>
</table>

- Modifying only a **fraction of a file**
 - Re-upload everything?
 - ... or just the modified portion?
- This has some implications with chunking
What are the client capabilities?

<table>
<thead>
<tr>
<th></th>
<th>Dropbox</th>
<th>SkyDrive</th>
<th>Wuala</th>
<th>Google Drive</th>
<th>Cloud Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>variable</td>
<td>variable</td>
<td>8 MB</td>
<td>✗</td>
</tr>
<tr>
<td>Bundling</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Deduplication</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Compression</td>
<td>always</td>
<td>never</td>
<td>never</td>
<td>smart</td>
<td>never</td>
</tr>
</tbody>
</table>

- **Uploading** *compressible content*?
 - Transmit it as quickly as possible?
 - ... or compress content?
Example: Compression

- **Text files**
 - Dropbox
 - SkyDrive
 - Wuala
 - Cloud Drive
 - Google Drive

- **Fake JPEGs**
 - Dropbox
 - SkyDrive
 - Wuala
 - Cloud Drive
 - Google Drive
Example: Compression

![Graph showing file size vs upload time for different cloud drives for text files and fake JPEGs.](image-url)
Example: Compression

- Only Dropbox and Google Drive compress files
- Dropbox has higher control overhead
Only Dropbox and Google Drive compress files

- Dropbox has higher control overhead
- Google Drive identifies JPEG content and skip compressing it
Implications to end-user performance?
Implications to end-user performance?

Consider different workloads → Upload time?
- One versus many files
- Small versus large files

Notice: test run from Europe
Implications to end-user performance?

- **Network latency** dominates the upload because of TCP
 - SkyDrive (160 ms RTT) → 4 s to send a 1 MB file
 - Google Drive (15 ms RTT) → 300 ms to send a 1 MB file
Implications to end-user performance?

- **Client capabilities** boost performance in this scenarios
 - Dropbox (90 ms RTT) → **10 s** to send 100 files of 10 kB each
 - Google Drive (15 ms RTT) → **42 s** to send 100 files of 10 kB each
Overhead = Total Traffic / Content Size?

- Cloud Drive → 3 HTTPS connections per file
- Dropbox → signaling cost of client capabilities
Overhead = Total Traffic / Content Size?

- **100 small files**
 - Bundling files pays back in network overhead
Conclusions

- Designed specific benchmarks for Personal Cloud Storage
Conclusions

- Designed specific benchmarks for Personal Cloud Storage
- Highlighted *design choices*
- ... and *their implications* on performance
Conclusions

- Designed specific benchmarks for Personal Cloud Storage
- Highlighted design choices
- ... and their implications on performance
- Data center placement
 - Centralized vs. distributed topologies
Conclusions

- Designed specific benchmarks for Personal Cloud Storage
- Highlighted design choices
- ... and their implications on performance
- Data center placement
 - Centralized vs. distributed topologies
- Client capabilities
 - Performance gains from bundling, deduplication etc.
Conclusions

- Designed specific benchmarks for Personal Cloud Storage
- Highlighted design choices
- ... and their implications on performance
- Data center placement
 - Centralized vs. distributed topologies
- Client capabilities
 - Performance gains from bundling, deduplication etc.
- Protocol design
Questions?

- Thanks for your attention

- Data and scripts can be downloaded from: