
E.S. Al-Shaer and G. Pacifici (Eds.): MMNS 2001, LNCS 2216, pp. 1–15, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Hysteresis Based Approach for Quality, Frame Rate,
and Buffer Management for Video Streaming Using TCP

Nagasuresh Seelam, Pankaj Sethi, and Wu-chi Feng

The Ohio State University
Department of Computer and Information Science

Columbus, OH  43210
{seelam, psethi, wuchi}@cis.ohio-state.edu

Abstract. In today’s Internet, the primary transport mechanism for video
streams is the UDP protocol, either congestion sensitive or not. In this paper,
we propose a mechanism that supports the high quality streaming and
adaptation of stored video across best-effort networks using the TCP transport
protocol. Our proposed approach has a number of useful features. First, it is
built on top of TCP, which effectively separates the adaptation and streaming
from the transport protocol. This makes the question of TCP-friendliness, the
behavioral property of a flow that allows fair-sharing of bandwidth with other
flows, much easier to answer. Second, it does not rely on any special handling
or support from the network itself, although any additional support from the
network itself will indirectly help increase the video quality. Finally, we show
through experimentation that this approach provides a viable alternative for
streaming media across best-effort networks.

1   Introduction

With the rapid advances in the “last mile” networking bandwidth, such as the digital
subscriber loop (DSL) and cable modems, the ability to achieve higher quality video
networking is becoming more feasible than ever. As a result of moving from 28.8kbps
or 56kbps coded streams to megabits per second, streaming of higher quality MPEG
video is now possible. As the bit-rates for the video streams increases, the bandwidth
requirements for the stream become more diverse over time, requiring more
intelligent buffering and rate adaptation algorithms to be put in place.

One of the key issues in creating highly scalable networks is the notion of TCP-
friendliness, which measures how fairly transport-layer flows are sharing network
bandwidth [7]. While various definitions of fairness have been proposed, the key idea
is that all the flows share the bandwidth and that they avoid sending the network into
congestion collapse. The manifestation of TCP-friendliness in video applications has
resulted in techniques such as congestion-sensitive UDP-based flows [2, 8], TCP-
flows without retransmission [1], or limited retransmission UDP-flows [11].

Another key design issue is how video streams can be adapted to fit within the
available resources of the network. For video conferencing applications and live video
applications, the adaptation typically occurs along either adapting the quality of the
video, adapting the frame rate of the video, or using a mixture of the two [9, 14]. For
the delivery of stored video streams, the adaptation really occurs over three
parameters: quality, frame, rate, and buffering (greater than that needed to remove



2 N. Seelam, P. Sethi, and W.-c. Feng

delay jitter). All of these can be used in isolation or combined together, however,
efficient techniques need to be developed for the algorithms to deliver the highest
quality video over the network.

In this paper, we propose a system for the delivery of stored video streams across
best-effort networks that has a number of unique properties. One of them is that it
uses the TCP protocol for flow and congestion control. Thus, the question of TCP
friendliness is not a problem. In this work, we will show how to effectively deliver
stored video content over best-effort networks using TCP. To show the efficacy of
this approach, we have conducted simulations of the algorithms and have
implemented the algorithms for MPEG streaming applications. Our results show that
we can effectively combine frame rate, frame quality, and buffering into a single
coherent framework.

In the rest of the paper, we will first describe the background and related work
necessary for the rest of the paper. In Section 3, we describe our proposed approach as
well as an evaluation metric called the effective frame rate. Section 4 provides the
experimental results of our research, including a simulation-based study of the
algorithms and an exploration of the effective frame rate measure. Finally, a
conclusion and directions for future work is provided.

Contributions of this work: We believe that there are two main contributions to this
work. First, we believe that this work uniquely demonstrates the effectiveness of
frame quality, frame rate, and buffering for streaming of stored video streams across
best-effort networks. Second, we introduce an evaluation metric for streaming video
protocols called the effective frame rate measure which provides better insight into
streaming quality than using just the average frame rate and the variation in frame
rate.

2   Background and Related Work

There are a large number of related research ideas that dove-tail to the techniques
proposed here. In this section, we briefly highlight some of this work.

2.1   Content Distribution Networks and Proxy-Based Delivery Mechanisms

There are a number of different approaches to the wide-scale distribution of video
information. They are distinguished primarily by the way that the data is managed
between the server that created the video data and the clients.

Content Distribution Networks (CDNs) focus on distributing the video
information, in whole, to caches and proxies that are close to the end clients that
require the information. For companies that provide access to web data, such as
Inktomi or Akamai, this involves creating large distributed data warehouses
throughout the world and using high-capacity, peer-to-peer networks to make sure the
distribution infrastructure is up to date. The video data that is “streamed” is streamed
from the cache to the end host.

Proxy-based dissemination architectures focus on actively managing streaming
video content through the proxy. Such techniques include efforts from the University
of Southern California (RAP) [3], the University of Massachusetts (Proxy Prefix
Caching) [13], and the University of Minnesota (Video Staging) [17]. Unlike the



A Hysteresis Based Approach         3

CDNs, these proxy-based mechanisms partially cache video data as it is streamed
from the server to the proxy and through to the client. Additional requests to retrieve a
video stream from the proxy will result in missing data being filled in at the proxy.

For our work, we assume that the proxies are far enough from the client to achieve
a reasonable hit rate to the video data. As an example, the proxy could serve an entire
campus (such as Ohio State).  The streaming mechanism that we have developed can
be used to deliver data from the data warehouses in the CDNs to the clients or can be
augmented to include the techniques that have been developed for proxy-based video
distribution networks.

2.2   Video Streaming Protocols

There are a large number of streaming protocols that have been developed for point-
to-point video distribution.  For sake of brevity, we will purposely omit discussion of
techniques developed for the distribution of video over multicast networks such as
[15]. For point-to-point video streaming, there are a tremendous number of streaming
algorithms including the Windows Media Player, RealPlayer, the Continuous Media
Toolkit (CMT) [12], Vosaic [2], the OGI Media Player[16], and the priority-based
streaming algorithm [4].

Fig. 1. This figure shows an example of the priority-based streaming algorithm. The window
keeps track of which frames are buffered in the client.  Using this window, the server always
attempts to transmit the highest priority frame within the window that has not yet been sent.  In
this example, the first unsent frame in priority level 2 is transmitted next (labelled A)

These algorithms are for the most part network congestion sensitive, with some
being arguably more TCP-friendly than others.   In addition, most of these streaming
algorithms focus on local adaptation of video sequences to network bandwidth
availability and have either no or limited retransmissions of missing data.

The work proposed here uses buffer management uniquely by controlling the frame
rate and quality based on a hysteresis loop which leads to a stabilized frame rate while
using TCP as its transport protocol.  We briefly describe the streaming mechanism
here as it will be needed in the next section.  The proposed algorithm prioritizes all the
frames within a given video. This assignment can be assigned to gracefully degrade
the frame rate as bandwidth becomes scarce. It does so by assigning frames to various
priorities within a window (just ahead of the playpoint). This window is used to “look



4 N. Seelam, P. Sethi, and W.-c. Feng

ahead” into the movie at least a minute into the future. Using this window, it then
delivers all frames in the window at the highest priority before delivering the lower
priority frames within the window. As a result it is able to gracefully degrade the
quality of video during times of congestion. An example of the windowing
mechanism is shown in Figure 1.

3   Proposed Adaptive Streaming Mechanism for TCP Delivery of
Stored Content

In this section, we propose a mechanism for the delivery of stored video content
across best-effort networks. Before describing the algorithm, we first describe some
basics of our approach including (i) some of the underlying assumptions that we
make, (ii) a discussion of the trade-off between quality, frame rate, and buffering, and
(iii) a metric for the evaluation of streaming media.

3.1   Basics

3.1.1   Underlying Assumptions
There are a number of unique aspects of our approach that we believe are important
for the delivery of stored video content over best-effort networks. These
characteristics are described below (some more contentious than others):

• Moving towards more bursty video sources - As the bandwidth over the network
increases, the ability to stream higher-bit-rate MPEG streams becomes possible.
This increase in bandwidth will create streams of greater bandwidth diversity than
we currently see on the Internet.

• Buffering at the Receiver - We believe that buffering limitations in the client end
systems are becoming a non-issue.  We believe this because disk and memory
capacity is outpacing the growth in bandwidth available to a single flow (not in
aggregate).  Thus, we can focus on getting the video data into the buffer without
worry of buffer overflow.

• TCP transport layer - We believe that stored video streaming should happen over
the TCP protocol.  This is perhaps the most contentious part, but there are several
reasons we believe this.  First, TCP is a widely deployed transport protocol.  This
allows applications that are built on this architecture to be deployed rapidly over a
large scale. Second, it allows us to resolve the TCP-friendliness issue rather easily:
it is TCP-friendly. Third, we do want flow/congestion control as well as retrans-
missions. Flow/congestion control are fairly obvious.  The reason we want
retransmissions for stored video is that we are planning the delivery of the stored
sources well in advance (even for B-frames), thus, when we transmit a frame we
want to receive it in whole at the receiver.

3.1.2   Quality and Frame Rate Adaptation
For the delivery of stored video content, there are number of options available for
adaptation over best-effort networks. Using these, we can control the quality of the
video stream, the frame rate of the video stream, and the ordering in which the video
data is streamed across the network.  In fact, each of these can be adapted in isolation



A Hysteresis Based Approach         5

or combined together in the delivery of video content.  It is our belief that while any
quality video can be used at any frame rate, we believe that there are operating points
that will be used to correlate frame rate and frame quality.

Operating points define interesting sets of combinations of frame rate and quality.
The streaming algorithms we develop are constrained to move from pre-determined
operating points to other pre-determined operating points.  Switching between
operating points (as the bandwidth availability changes over the network) is guided by
the principle of equal priority to frame-rate and quality. In other words, we choose
not to compromise one parameter with respect to the other. Therefore any deg-
radation/improvement in the streaming status would trigger comparable
degradation/improvement in both the parameters. This is a fairly common approach as
found in the Quasar streaming model as well as industrial models such as the Real
Networks SureStream mechanism [10].  For frame rate adaptation, we allow the
frame rate to change within a small set of values (e.g., 14-17 frames per second) for a
fixed video quality level.  Any further deviation from this frame rate will trigger the
system to move to a different quality stream.

As an example of our philosophy, the operating point of (30 frames per second,
low video quality) is not a reasonable operating point since we are severely sacrificing
quality to achieve a high frame rate.   Instead streaming at (15 frames per second,
medium video quality) is a better choice in that it attaches equal importance to frame-
rate and quality.  For the rest of this work, we assume that multiple copies of the
video stream are available at the encoded bit-rates, similar to the delivery mechanisms
in the RealNetworks SureStream and the Oregon Graduate Institute streaming player.
One could imagine with appropriate computing power that a transcoder could be
implemented to do the same thing on-the-fly.

3.1.3   Effective Frame Rate
Our proposed video streaming algorithm attempts to maximize the frame rate
displayed to the client, while minimizing the variability or the “jerkiness” in the
display frame rate. While we believe that it is ultimately up to the end user to decide
how aggressive or conservative the streaming algorithm is (while still being TCP
compliant!), we believe it is important to define a metric that adequately measures this
objective function in order to evaluate the performance of the algorithm.

In the past, researchers have often measured the average and variation in the frame
rate delivered to the client as metrics for performance. While there is typically a
strong correlation between standard deviation and jerkiness, this may not necessarily
hold true. For example, consider a stream displayed at 10 frames per second for half
the duration of the video, and at 20 frames per second for the remaining half.
Additionally, consider a stream displayed alternately at 10 and 20 frames per second
throughout the length of the video. The average frame rate and standard deviation in
both cases is the same, but the perceived “jerkiness” in the former is much less than
that in the latter.

As another example, we have graphed the frame rate delivered for a video
sequence using the priority based streaming algorithm from reference [4] in Figure 2
(a).  In Figure 2 (b) we have merely sorted the frame rate points making up figure (a).
Again, it is clearly evident that the user would perceive much more “jerkiness” with
the frame rate delivered in figure (a) than with (b). However, the standard deviation in
both cases is the same (4.62 frames).



6 N. Seelam, P. Sethi, and W.-c. Feng

Fig. 2. (a) shows an example of the frame rate delivered by the priority-based streaming
algorithm. (b) shows the same frame rate points but sorted in ascending order.  Both figures
exhibit the same frame rate and frame rate variation.

We propose a metric that accounts for the jerkiness in the display frame rate more
appropriately. We define Effective Frame Rate (EFR) as follows

where FPSavg is the average frame rate, frameratei is the number of frames displayed in
the ith second of the video clip, and W and P weighting factors that we will describe
shortly.  The idea behind EFR is that it first measures the average frame rate delivered
to the user and then penalizes the EFR for variations in the frame rate delivered.

Fig. 3. Pictorial representation of the hysterisis scheme. Two parabolas shown determine how
frame-rate should change when buffer level changes. Parabola P1 has the property that the
frame-rate drops rapidly with buffer when it is close to the min buffer mark. On the other hand
when the buffer level is close to the max buffer mark and dropping, the frame-rate does not
drop as rapidly, thereby taking advantage of buffer. Parabola P2 has the property that when
buffer level is close to the min buffer mark and rising, the frame-rate does not increase as
rapidly, thereby building the buffer. On the other hand when the buffer level is close to the max
buffer mark and rising the frame-rate increases at a higher rate thereby greedily utilizing excess
bandwidth.

The penalty in the calculation of the frame rate is determined by two parameters in
the metric, W and P. These two terms determine the nature of the penalty to be
applied when the frame rate changes. The super linear term (P) is added to penalize



A Hysteresis Based Approach         7

large changes in the frame rate more then small changes which in some cases may
even be imperceptible. The linear function(W) is used to weigh the penalty for
changes in frame rate.  These two terms can be set to user preferences to allow one to
evaluate the algorithms based upon their own idea of what makes a good streaming
algorithm.

3.2   Hysteresis Based Video Adaptation

In this section, we describe our proposed approach. Our model first assigns each of the
frames in the video stream to a priority level for streaming.  As a simple case, one
might assign all the I-frames in an MPEG sequence to the highest priority level, all P-
frames to the second highest priority, and all B-frames to the lowest priority.  Thus, no
B-frame will be delivered before it’s P-frame has been delivered.  Also note that
because we are using TCP as the transport protocol, we are guaranteed that the B-
frame will have its reference frames in at the client.  While we have described a very
simple mapping here, our system is able to assign arbitrary priorities to frames
depending upon the user’s preferences.  For example, one might map every alternating
B-frame to a higher priority than the rest of the B-frames.  In this case, during times of
low bandwidth availability, every other B-frame will be delivered, spacing out the loss
of frames.  Finally, we create static priorities for all operating points for the movie that
is stored.

3.3   Proposed Approach

Once we have the priority assignments, the next goal is to determine a plan for the
delivery of the stored video. We observe that buffer occupancy is a measure of the
frame rate and quality that can be supported. A shrinking buffer indicates  either a
decrease in average bandwidth and/or increase in frame sizes in the video. Similarly
expanding buffer indicates increase in average bandwidth and/or decreasing frame
sizes in the video.

The proposed approach is based on a hysteresis model. The streaming itself
consists of two phases. First one is the prefetch phase wherein sufficient video is
prefetched. In the second phase, the remaining video's play-time is divided into fixed
length intervals. At the beginning of each time interval the streaming parameters,
frame-rate and quality, are dynamically determined. For this a hysteresis based buffer
monitoring mechanism is used.

The hysteresis model is pictorially represented in Figure 3. The algorithm tries to
maintain the frame-rate constant when the buffer size lies between the two parabolas.
Initially we use the parabola P1 to determine the frame-rate. Subsequently for each
interval we check the buffer level to determine the next set of streaming parameters.
For increasing buffer levels we use parabola P2 and for decreasing buffer levels
parabola P1 is used. The parabolas P1 and P2 are defined as follows



8 N. Seelam, P. Sethi, and W.-c. Feng

Fig. 4. Using parabola P1: For increments in buffer level the frame-rate is held constant at the
previous value until the buffer occupancy hits parabola P2. Then P2 is used to recalculate
frame-rates from this point when-ever buffer level increases.Using parabola P2: For drops in
buffer level the frame-rate is held constant at the previous value until the buffer occupancy hits
parabola P1. Then P1 is used to recalculate frame-rates from this point whenever buffer level
decreases.

where
f is the new operating point. The new operating point depends on the following

parameters.
B is the current buffer occupancy.
bmin is the minimum buffer occupancy allowed. This is same as the lower threshold

of the hysteresis loop. It’s typical value might be half a minute of video.
bmax is the maximum buffer occupancy allowed. This is usually the maximum

amount of buffer available to the application. This is same as the upper threshold of
the hysteresis loop. It’s typical value is three to 5 minutes of video.

fmax is the maximum frame rate. Typically this is set to maximum which is 30
frames per second.

fmin is the minimum frame rate permitted. This is a user configurable parameter and
indicates minimum frame rate which is considered reasonable by the user. Algorithm
tries to maintain atleast this frame rate.

Assume we are currently using parabola P1 to make the streaming decisions.
Figure 4(a) shows this scenario. Depending on the direction in which buffer
occupancy changes, there can be two possible cases for the next interval.

• If the buffer level decreases then we use the current parabola-in-use (P1) to trace
it downward.

• If buffer level does not decrease then we continue with the current frame-rate for
the future intervals as long as the buffer level does not hit the parabola P2.

When the buffer occupancy hits parabola P2, this becomes the active parabola and
the next streaming frame-rate parameter is decided based on this curve. Figure 4 (b)



A Hysteresis Based Approach         9

shows this scenario. Here again, depending on the changes in buffer occupancy, there
can be two possible cases for the next interval.

• If the buffer level increases we use the current parabola-in-use (P2) to climb
upwards.

• If the buffer level does not increase then we hold to the current frame-rate as
long as the buffer levedoes not hit parabola P1.

The motivation behind this is to achieve a constant frame-rate and quality video as
long as the buffer occupancy remains between upper and lower thresholds of the
hysterisis loop determined by parabolas P1 and P2. Frame rate is changed only when
the buffer occupancy improves or degrades substantially. The hysteresis mechanism
takes care of bursts of frames with large variation in sizes in the video by not changing
the frame rate and the quality immediately. The maximum buffer limit and the
minimum frame-rate are the user defined parameters. A higher maximum buffer limit
allows more amount of video to be buffered thereby allowing a higher degree of
smoothing of frame rate. The algorithm aims at building the buffer in advance to deal
with a potential burst of larger sized frames in the future. The algorithm does not build
too much of buffer. When the buffer occupancy increases beyond a threshold it
increases the frame rate and/or quality of the video. The algorithm also provides
cushion to the variations in bandwidth, immunity to short gaps in bandwidth and
variations in the round trip times of the underlying transmission route by appropriately
setting the lower and upper thresholds for the buffer occupancy.

4   Experimentation

In this section, we describe some of the performance results of our streaming
algorithm compared with simple streaming algorithms that perform rate changes based
on per-second adaptability and the priority-based streaming algorithm which uses
windows that are in the size of minutes.  We will also explore the use of the effective
frame rate metric for measuring a streaming algorithm’s performance. Before we
describe our experimental results, however, we will describe our experimental
simulation environment and the video data and network traffic traces that we captured.

4.1   Experimental Environment

We have captured and compressed two full-length movies (Matrix and E.T. - the Extra
Terrestrial) into the MPEG compressed video format for use in the simulations1.  For
the movie Matrix, we used Future Tel’s PrimeWare hardware digital video
compression board.  This board captured the analog output of a DVD player and
compressed the movies into MPEG-2 video format. Using this board, we captured
four streams at varying qualities for the simulations. For the movie E.T. - the Extra
Terrestrial, we already had an MPEG-1 video stream compressed into three different

                                                          
1

The video and network traces will be made available via the web site: http://www.cis.ohio-
state.edu/~wuchi/ Videos.



10 N. Seelam, P. Sethi, and W.-c. Feng

quality levels and are using those streams here.  The statistics for the video trace data
are shown in Table 1.
Table 1. This figure shows the statistics for the video traces that were used in the experi-
mentation of the various algorithms

To provide deterministic results of the various algorithms, we captured 2 two-hour
long TCP traces. One was captured from the University of Michigan to Ohio State
and the other was captured locally between two machines on different sub-networks.
Thus, the comparisons that we draw in this paper are based upon the TCP traces.  For
actual streaming algorithms that just use UDP with or without flow control and with
or without retransmissions may be slightly different than those presented here.  We
also note that comparing the performance of streaming algorithms that receive partial
data (as in a UDP stream) is extremely difficult as it is hard to compute what the
relative impact of receiving half a frame of video is for any streaming algorithm.

For comparison purposes, we use two streaming algorithms for comparison.  The
first, which we will refer to as the naive algorithm, simply calculates the bandwidth
transmitted over the last several seconds to calculate the closest operating point for
which to stream.  This algorithm is very similar to the algorithms found in the CMT
toolkit out of Berkeley or the Oregon Graduate Institute player.  The Priority-Based
Streaming algorithm is an extension to the basic naive algorithms that uses a much
larger lookahead window.  Here, the lookahead was set to two-minutes, meaning that
all high-priority (I-frames) must be received before the algorithm starts delivering
lower priority-frames (P and B). Thus, we expect the priority-based algorithm to
provide substantially smoother operation than the naive algorithm.  These two
algorithms are explained in more detail in reference [6].  Finally, we note that while
we are using simulation-based experimentation, all algorithms were not allowed to
“look” at the future bandwidth availability from the network trace.

4.1.1   Experimental Results

In the rest of this section, we present several simulation results that demonstrate the
effectiveness of the hysteresis-based streaming algorithm and that show how the
effective frame rate metric that we propose work. Figure 5 shows the frame rate
achieved by the naive, priority-based, and hysteresis-based streaming algorithms for
the movie Matrix and the bandwidth trace shown in Figure 5 (a).



A Hysteresis Based Approach         11

We see here that because the bandwidth availability drastically changes over time
and the compressed video streams’ network requirements vary significantly over time,
the naive algorithm (as shown in Figure 5 (b)) has a very hard time sustaining a
smooth frame rate for any significant period of time.  This is because planning does
not occur on anything greater than second-level in time making the frame rate
delivered highly sensitive to the bandwidth requirements and network availability.
We also note that the frame rate delivered by the naive algorithms is actually
somewhat smooth over very small time scales but because we are displaying over 100
minutes in the figure, it appears significantly more bursty.  In comparison, the
priority-based streaming algorithm with a window of one-minute attempts to very
conservatively change the frame rate over time by making sure a minute’s worth of
video at higher priority layers has been delivered before transmitting the lower priority
frames.  As shown in Figure 5 (c), the frame rate does not vary as drastically over time
but is still somewhat bursty on a medium-term time-scale.  We also see that the
priority-based streaming algorithm is more conservative than the other algorithms in
that it very slowly increases the frame rate of the video stream even when a higher
frame-rate is possible.  The main reason that the frame rate is still somewhat bursty is
that the bandwidth requirements and bandwidth availability are changing over time,
making it extremely difficult to track the available bit-rate that needs to be sent.
Finally, the hysteresis-based streaming algorithm (as shown in Figure 5 (d)) does a
much better job of smoothing out the frame rate delivered to the client.  Buffering
requirements are bounded by upper and lower thresholds and they also smooth out the
changes in network bandwidth while keeping the bandwidth demand from the
application somewhat more constant.

     Applying our effective frame rate measurement to the algorithms, we have listed
the various EFR measurements for a variety of W and P values in Table 2. By doing
so, we can describe how the metric works with an example streaming session shown
in Figure 2. For the parameters (W=0, P=1), no penalty is incurred by the algorithms
for bursty frame behavior.  As a result, the metric is a measure of how many frames
were delivered.  We see that under these parameters, the naive algorithm does the
best.  This is somewhat intuitive as the naive algorithm is very greedy.  When there
are small frames that are currently being transmitted, the algorithm fetches as many of
them as it can, while the other approaches attempt to prefetch some of the larger
frames in the future knowing that they need to prepare for these regions.  We also see
in Figure 2 that the priority-based algorithm is extremely conservative in its frame rate
delivery to the client, with a consistently lower average frame rate. Under (W=1,
P=1), the algorithms are penalized linearly for having bursty frame rates over time.
The penalty here is the average amount of rate change between consecutive second
intervals. It is important to note that simply achieving a constantframe rate is not the
goal as it will undoubtedly result in a very low average frame rate in the first term of
the EFR. Finally, we see that as the weight penalty increases the hysteresis-based
approach does even better.

      Figure 6 shows the delivery of the Matrix using the second bandwidth trace where
the bandwidth availability is greater than in the previous experiment. We see here that
the naive algorithm is able to achieve the full 30 frames per second delivery quite a
number of  times.  We also  see the  same type of response as previously from the
various algorithms. That is the priority-based algorithm is somewhat conservative,



12 N. Seelam, P. Sethi, and W.-c. Feng

while the hysteresis-based approach is able to smooth out the frame rate over
considerable time-scales. The EFR measurement for the algorithms shown in Table 3.

Fig. 5. This figure shows the frames rates obtained from the various algorithm for the movie
Matrix using the bandwidth trace used in (a). Figures (b) through (d) show the frame rates of the
naive algorithm, the simple priority-based algorithm, and the hysteresis-based approach for the
entire duration of the movie. The variability in (d) is significantly lower then the other two
algorithms.

Table 2. The effective frame rate for Matrix for frame rates shown in Figure 5.

As a final example, to show what happens when we change the movie to E.T. we
have graphed the results in Figure 7. Finally, the EFR figures for the movie E.T.
(shown in Figure 7) are shown in  Table 4.



A Hysteresis Based Approach         13

Fig. 6. This figure shows the frames rates obtained from the various algorithm for the movie
Matrix using the bandwidth trace used in (a). The figures (b) through (d) show the frame rates
of the naive algorithm, the simple priority-based algorithm, and the hysteresis-based approach.
The variability in (d) is significantly lower then the other two algorithms

5   Conclusion

In this paper, we have introduced a hysteresis-based streaming algorithm that
uniquely uses buffer management in the streaming of stored video data over best-
effort networks. As we have shown, this approach is much more effective in
smoothing out the variability in frame rate delivered to the user. We have also
introduced an effective frame rate metric to evaluate the effectiveness of various
stored video streaming algorithms.  The key concept here is that instead of measuring
just the average frame rate and the variability in frame rate delivered, it calculates an

Table 3. The effective frame rate for Matrix for frame rates shown in Figure 6.



14 N. Seelam, P. Sethi, and W.-c. Feng

Fig. 7. This figure shows the frames rates obtained from the various algorithm for the movie
Extra Terrestrial using the bandwidth trace used in (a). The figures (b) through (d) show the
frame rates of the naive algorithm, the simple priority-based algorithm, and the hysteresis-based
approach. The variability in hysteresis-based approach is significantly lower then the other two
algorithms.

average frame rate and then penalizes the average frame rate depending on how
quickly the frame rate changes at small time scales.  Finally, we have captured several
MPEG-1 and MPEG-2 video streams as well as two network bandwidth traces for
simulation, all of which will be made available via the Web.

Table 4. The effective frame rate for Extra Terrestrial frame rates shown in Figure 7

We are currently working towards incorporating semantic information into this
streaming model. That is, all frames are created equal in this approach.  One can
imagine that if all the semantic information from the stream can be automatically
extracted that some scenes within the video sequence might have higher priority than
others.



A Hysteresis Based Approach         15

References
1. Shanwei Cen, Jonathan Walpole, Calton Pu, “Flow and Congestion Control for Internet

Media Streaming Applications”, in Proceedings of SPIE Multimedia Computing and
Networking 1998, pp 250-26 4.

2. Zhigang Chen, S.M. Tan, R. Campbell, Y. Li, “Real Time Video and Audio in the World
Wide Web”, in the Fourth International World Wide Web Conference, Boston,
Massachusetts, December 1995.

3. E. Ekici, R. Rajaie, M. Handley, D. Estrin, “RAP: An End-to-end Rate-based Congestion
Control Mechanism for Realtime Streams in the Internet,” in Proceedings of INFOCOM
99.

4. W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev, “A Priority-Based Technique for
the Best-effort Delivery of Stored Video”, in Proc. of the SPIE Multimedia Computing and
Networking, January 1999.

5. Wu-chi Feng, S. Sechrest, “Smoothing and Buffering for Delivery of Prerecorded
Compressed Video”, in Proceedings of IS&T/SPIE Multimedia Computing and
Networking, Feb. 1995, pp. 234-242.

6. Wu-chi Feng, S. Sechrest, “Critical Bandwidth Allocation for the Delivery of Compressed
Prerecorded Video”, Computer Communications, Vol. 18, No. 10, Oct. 1995, pp. 709-717.

7. J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow control. Note sent to
end2end-interest mailing list, Jan 1997

8. Steve McCanne, V. Jacobson, “VIC: A Flexible Framework for Packet Video”,
Proceedings of ACM Multimedia 1995, November 1995.

9. P. Nee, K. Jeffay, and Gunner Danneels, “The Performance of Two-Dimensional Media
Scaling for Internet Videoconferencing”, in Intl. Workshop on Network and Operating
System Support for Digital Audio and Video, May 1997.

10. RealNetworks - http://www.real.com
11. I. Rhee, “Error control techniques for interactive low-bit rate video transmission over the

Internet”, in Proc. SIGCOMM, 1998
12. L.A. Rowe, K. Patel, B.C. Smith, K. Liu, “ MPEG Video in Software: Representation,

Transmission and Playback”, in Proc. of IS&T/SPIE 1994 Int’l Symp. on Elec. Imaging:
Science and Technology, San Jose, CA, February 1994.

13. S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams”, in
Proceedings of INFOCOM 99, April 1999.

14. M. Talley and K. Jeffay, “Two-Dimensional Scaling Techniques For Adaptive, Rate-
Based Transmission Control of Live Audio and Video Streams”, in Proceedings of the
Second ACM International Conference on Multimedia, San Francisco, CA, October 1994.

15. Brett J. Vickers, Célio Albuquerque and Tatsuya Suda, “Source-adaptive multilayered
multicast algorithms for real-time video distribution”, IEEE/ACM Transactions on
Networking, December 2000

16. Jonathan Walpole, Rainer Koster, Shanwei Cen, et. al, “A Player for Adaptive MPEG
Video Streaming Over The Internet”, in Proc. 26th Applied Imagery Pattern Recognition
Workshop, Washington DC, October 15-17, 1997.

17. Zhi-Li Zhang, Yuewei Wang, David H. C. Du and Dongli Shu, “Video staging: a proxy-
server-based approach to end-to-end video delivery over wide-area networks”, IEEE/ACM
Transactions on Networking, Aug. 2000


	1   Introduction
	2   Background and Related Work
	2.1 Content Distribution Networks and Proxy-Based Delivery Mechanisms
	2.2 Video Streaming Protocols

	3   Proposed Adaptive Streaming Mechanism for TCP Delivery of Stored Content
	3.1 Basics
	3.1.1 Underlying Assumptions
	3.1.2 Quality and Frame Rate Adaptation
	3.1.3   Effective Frame Rate

	3.2 Hysteresis
	3.3 Proposed Approach

	4 Experimentation
	4.1 Experimental Environment
	4.1.1 Experimental Results


	5 Conclusion

